Smells like learning

Order wine at a fancy restaurant, and the sommelier might describe its aroma as having notes of citrus, tropical fruit, or flowers. Yet, when you take a whiff, it might just smell like … wine. How can wine connoisseurs pick out such similar scents?

Cold Spring Harbor Laboratory (CSHL) Associate Professor Saket Navlakha and Salk Institute researcher Shyam Srinivasan may have the answer. They have found that certain neurons allow fruit flies and mice to tell apart distinct smells. The team also observed that with experience, another group of neurons helps the animals distinguish between very similar odors.


🌌 Science is not just a subject; it’s a way of life. Embrace your inner scientist with our “Science is Golden” tee. Elevate your fashion game while celebrating the beauty of discovery. Shop now!

The study was inspired by research from former CSHL Assistant Professor Glenn Turner. Years ago, Turner noticed something odd. When exposed to the same scent, some fruit fly neurons fired consistently while others varied from trial to trial. At the time, many researchers dismissed these differences as a product of background noise. But Navlakha and Srinivasan wondered whether the variations might serve a purpose. 

“There were two things we were interested in,” Navlakha says. “Where is this variability coming from? And is it good for anything?”


Sign up for the Daily Dose Newsletter and get every morning’s best science news from around the web delivered straight to your inbox? It’s easy like Sunday morning.

Processing…
Success! You're on the list.

To address these questions, the team created a fruit fly smell model. The model showed that the variability came from a deeper circuit of the brain than previously thought. This suggested the variation was indeed meaningful.

Next, the team observed that some neurons respond differently to two very dissimilar odors, but the same to similar smells. The researchers called these neurons reliable cells. This small group of cells helps flies quickly distinguish between differing odors. Another much larger group of neurons responds unpredictably when exposed to similar smells. These neurons, which the researchers call unreliable cells, might help us learn to identify specific scents in a glass of wine, for example.

“The model we developed shows these unreliable cells are useful,” Srinivasan says. “But it requires many learning bouts to take advantage of them.”

Of course, this research isn’t just for wine drinkers. Srinivasan says the results might help explain how we learn to differentiate between similarities detected by other senses, and how we make decisions based on those sensory inputs. The findings could also lead to better machine-learning models. Unlike fruit fly and mouse neurons, computers generally respond the same to the same inputs.

“Maybe you don’t want a machine-learning model to represent the same input the same way every time,” Navlakha explains. “In more continual learning systems, variability could be useful.”

IMAGE CREDIT: Navlakha lab/Cold Spring Harbor Laboratory


If you enjoy the content we create and would like to support us, please consider becoming a patron on Patreon! By joining our community, you’ll gain access to exclusive perks such as early access to our latest content, behind-the-scenes updates, and the ability to submit questions and suggest topics for us to cover. Your support will enable us to continue creating high-quality content and reach a wider audience.

Join us on Patreon today and let’s work together to create more amazing content! https://www.patreon.com/ScientificInquirer


DAILY DOSE: World leaders talk climate change; March of the microscopic robots.
TALK TALK TALK. The international climate talks in Dubai highlighted the urgency …
50 States of Science: The New Mexico Museum of Natural History and Science is the states gem for the curious.
NUTSHELL: The New Mexico Museum of Natural History and Science is a …

Leave a Reply

%d bloggers like this: